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tring theory has, even among theoretical physi-
cists, the reputation of being mathematically
intimidating. But many of its essential elements
can actually be described simply. This article
aims to answer a few basic questions. How does

string theory generalize standard quantum field the-
ory? Why does string theory force us to unify general
relativity with the other forces of nature, while stan-
dard quantum field theory makes it so difficult to
incorporate general relativity? Why are there no ul-
traviolet divergences in string theory? And what
happens to Albert Einstein’s conception of spacetime?

Anyone who has studied physics is aware that
although physics—like history—does not precisely
repeat itself, it does rhyme, with similar structures
appearing in different areas. For example, Einstein’s
gravitational waves are analogous to electromag-
netic waves or to the water waves at the surface of
a pond. I will begin with one of nature’s rhymes: an
analogy between quantum gravity and the theory of
a single particle.

Even though we do not really understand it,
quantum gravity is supposed to be some sort of the-

ory in which, at least from a macroscopic point of
view, we average, in a quantum mechanical sense,
over all possible spacetime geometries. (We do not
know to what extent that description is valid micro-
scopically.) The averaging is performed, in the sim-
plest case, with a weight factor exp(iI/ħ), where I is
the Einstein–Hilbert action:

Here G is Newton’s constant, g is the determinant of
the metric tensor, R is the curvature scalar, Λ is a cos-
mological constant, and d4x is the spacetime volume
element. We could add matter fields, but we do not
seem to need them.

Let us try to make such a theory with one space-
time dimension instead of four. The choices for a
one-manifold are quite limited:

Moreover, the curvature scalar is identically zero in
one dimension, and all that’s left of the Einstein–
Hilbert action is the cosmological constant. How-
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ever, Einstein’s fundamental insights were not tied
to the specific Einstein–Hilbert action. Rather, they
were in the broader ideas that the spacetime geom-
etry can vary dynamically and that the laws of 
nature are generally covariant, or invariant under
arbitrary diffeomorphisms (coordinate transforma-
tions) of spacetime. (See the article by Michel Janssen
and Jürgen Renn on page 30.) By applying those 
insights, we can make a nontrivial quantum gravity
theory in one dimension provided we include mat-
ter fields.

Adding matter
The simplest matter fields are scalar fields XI, where
I = 1, … , D. The standard general relativistic action
for scalar fields is

where gtt is a 1 × 1 metric tensor, and the Λ term has
been replaced with m2/2. 

Let us introduce the canonical momentum
PI = dXI/dt. The Einstein field equation—which is the
equation of motion obtained by varying the action I
with respect to g—is just 

We pick the gauge gtt = 1, so the equation is
P2 + m2 = 0, with P2 = ∑IPI

2. Quantum mechanically
(in units with ħ = 1), PI = −i∂/∂XI, and the meaning of
the equation P2 + m2 = 0 is that the wavefunction
Ψ(X), where X is the set of all XI, must be annihi-
lated by the differential operator that corresponds
to P2 + m2:

This is a familiar equation—the relativistic
Klein–Gordon equation in D dimensions—but in
Euclidean signature, in which time and space are on
equal footing. To get a sensible physical interpreta-
tion, we should reverse the kinetic energy of one of
the scalar fields XI so that the action becomes

Now the wavefunction obeys a Klein–Gordon equa-
tion in Lorentz signature:

So we have found an exactly soluble theory 
of quantum gravity in one dimension that de-
 scribes a spin-0 particle of mass m propagating in D-
dimensional Minkowski spacetime. Actually, we can
replace Minkowski spacetime by any D-dimensional
spacetime M with a Lorentz (or Euclidean) signa-
ture metric GIJ, the action being then

From here on, summation over repeated indices is
implied. The equation obeyed by the wavefunction
is now the massive Klein–Gordon equation in
curved spacetime M:

where D represents covariant differentiation.
Just to make things more familiar, let us go back

to the case of flat spacetime (I will work in Euclidean
signature to avoid having to keep track of some fac-
tors of i). Let us calculate the probability amplitude
for a particle to start at one point x in spacetime and
end at another point y. We do so by evaluating a
Feynman path integral in our quantum gravity
model. The path integral is performed over all met-
rics g(t) and scalar fields XI(t) on the one-manifold 

with the condition that X(t) is equal to x at one end
and to y at the other.

Part of the process of evaluating the path inte-
gral in our quantum gravity model is to integrate
over the metric on the one-manifold, modulo diffeo-
morphisms. But up to diffeomorphism, the one-
manifold has only one invariant, its total length τ,
which we will interpret as the elapsed proper time.
In our gauge gtt = 1, a one-manifold of length τ is de-
scribed by a parameter t that covers the range
0 ≤ t ≤ τ. Now on the one-manifold, we have to inte-
grate over all paths X(t) that start at x at t = 0 and
end at y at t = τ. That is the basic Feynman integral
of quantum mechanics with the Hamiltonian being
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Figure 1. A graph with trivalent vertices. The 
natural path integral to consider is one in which the
positions x1, … , x4 of the four external particles are
fixed, and the integration is over everything else. 
A convenient first step is to evaluate an integral in
which the positions y1, … , y4 of the vertices are also
fixed. This Feynman diagram can generate an ultra-
violet divergence in the limit that the proper-time
parameters τ1, … , τ4 in the loop all vanish.



H = ½(P2 + m2). According to Feynman, the result is
the matrix element of exp(−τH)

But we have to remember to do the gravitational
part of the path integral, which in the present con-
text means to integrate over τ.

The integral over τ gives our final answer:

This formula is the output of the complete path in-
tegral—an integral over metrics g(t) and paths X(t)
with the given endpoints, modulo diffeomorphisms—
in our quantum gravity model.

The function G(x, y) is the standard Feynman
propagator in Euclidean signature, apart from a
convention-dependent normalization factor. More-
over, an analogous derivation in Lorentz signature (for
both the spacetime M and the particle world line) gives
the correct Lorentz-signature Feynman propagator.

So we have interpreted a free particle in D-
dimensional spacetime in terms of 1D quantum
gravity. How can we include interactions? There is
actually a perfectly natural way. There are not a lot
of smooth one-manifolds, but there is a large supply
of singular one-manifolds in the form of graphs,
such as the one in figure 1. Our quantum-gravity ac-
tion makes sense on such a graph. We simply take
the same action that we used before, summed over
all the line segments that make up the graph.

Now to do the quantum-gravity path integral,

we have to integrate over all metrics on the graph,
up to diffeomorphism. The only invariants are the
total lengths or proper times of each of the seg-
ments. Some of the lines in figure 1 have been la-
beled by length or proper-time variables τi.

The natural amplitude to compute is one in
which we hold fixed the positions x1, … , x4 of the
graph’s four external particles and integrate over all
the τi and over the paths the particles follow on the
line segments. To evaluate such an integral, it is con-
venient to first perform a computation in which we
hold fixed the positions y1, … , y4 of the vertices in
the graph. That means all endpoints of all segments
are labeled. The computation that we have to per-
form on each segment is the same as before and
gives the Feynman propagator. The final integration
over y1, … , y4 imposes momentum conservation at
each vertex. Thus we arrive at Feynman’s recipe for
computing the amplitude associated with a Feyn-
man graph—a Feynman propagator for each line
and an integration over all momenta subject to mo-
mentum conservation. 

A more perfect rhyme
We have arrived at one of nature’s rhymes. If we im-
itate in one dimension what we would expect to do
in four dimensions to describe quantum gravity, we
end up with something that is certainly important
in physics—namely, ordinary quantum field theory
in a possibly curved spacetime. In our example in
figure 1, the ordinary quantum field theory is scalar
ϕ3 theory because of the particular matter system
we started with and because our graph had cubic
vertices. Quartic vertices, for instance, would give
ϕ4 theory, and a different matter system would give
fields of different spins. Many or maybe all quantum
field theories in D dimensions can be derived in that
sense from quantum gravity in one dimension.

There is actually a much more perfect rhyme if
we repeat the procedure in two dimensions—that is,
for a string instead of a particle. We immediately run
into the fact that a two-manifold Σ can be curved:

On a related note, 2D metrics are not all locally
equivalent under diffeomorphisms. A 2D metric in
general is a 2 × 2 symmetric matrix constructed from
three functions:

A transformation of the 2D coordinates σ, generated
by

can remove only two functions, leaving the curva-
ture scalar as an invariant.

All those complications suggest that the inte-
gral over 2D metrics will not much resemble what
we found in the 1D case. But now we notice the fol-
lowing. The natural anolog of the action that we
used in one dimension is the general relativistic ac-
tion for scalar fields in two dimensions, namely
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Figure 2. From lines to tubes. (a) A Feynman diagram with proper-
time parameters τ1, τ2, and τ3 (top) can be turned into a corresponding
Riemann surface (bottom) by slightly thickening all the lines in the 
diagram into tubes that join together smoothly. The Riemann surface is
parameterized, up to coordinate and Weyl transformation, by complex
variables τ̂1, τ̂2, and τ̂3. (b) The same procedure can turn the one-loop
Feynman diagram (top) into its string theory analog (bottom).



But this is conformally invariant, that is, it is invari-
ant under a Weyl transformation of the metric
gab → eϕgab for any real function ϕ on Σ. This is true
only in two dimensions (and only if there is no cos-
mological constant, so we omit that term in going to
two dimensions). Requiring Weyl invariance as well
as diffeomorphism invariance is enough to make
any metric gab on Σ locally trivial (locally equivalent
to δab), similar to what we said for one-manifolds.

Some very pretty 19th-century mathematics
now comes into play. A two-manifold whose metric
is given up to a Weyl transformation is called a Rie-
mann surface. As in the 1D case, a Riemann surface
can be characterized up to diffeomorphism by fi-
nitely many parameters. There are two big differ-
ences: The parameters are now complex rather than
real, and their range is restricted in a way that leaves
no room for an ultraviolet divergence. I will return
to that last point later.

But first, let us take a look at the relation be-
tween the 1D parameters and the 2D ones. A metric
on the Feynman graph in figure 2a depends, up to
diffeomorphism, on three real lengths or proper-
time parameters τ1, τ2, and τ3. If the graph is “thick-
ened” into a two-manifold, as suggested by the 
figure, then a metric on that two-manifold depends,
up to diffeomorphism and Weyl transformation, on
three complex parameters τ̂1, τ̂2, and τ̂3. Figure 2b
gives another illustration of the relation between 
a Feynman graph and a corresponding Riemann
surface.

We used 1D quantum gravity to describe quan-
tum field theory in a possibly curved spacetime but
not to describe quantum gravity in spacetime. The
reason that we did not get quantum gravity in
spacetime is that there is no correspondence be-
tween operators and states in quantum mechanics.
We considered the 1D quantum mechanics with 
action

What turned out to be the external states in a Feyn-
man diagram were just the states in that quantum
mechanics. But a deformation of the spacetime met-
ric is represented not by a state but by an operator.
When we make a change δGIJ in the spacetime met-
ric GIJ, the action changes by I → I + ∫ dt√‾gO, where
O = ½gttδGIJ∂tXI∂tXJ is the operator that encodes a
change in the spacetime metric. Technically, to com-
pute the effect of the perturbation, we include in the
path integral a factor δI = ∫ dt√‾gO, integrating over
the position at which the operator O is inserted.

A state would appear at the end of an external
line in the Feynman graph. But an operator O such
as the one describing a perturbation in the space-
time metric appears at an interior point in the graph,
as shown in figure 3a. Since states enter at ends of
external lines and operators are inserted at internal
points, there is in general no simple relation be-
tween operators and states.

But in conformal field theory, there is a corre-
spondence between states and operators. The oper-
ator O = ½gabδGIJ∂aXI∂bXJ that represents a fluc -
tuation in the spacetime metric automatically
represents a state in the quantum mechanics. That
is why the theory describes quantum gravity in
spacetime.

The operator–state correspondence arises from
a 19th-century relation between two pictures that
are conformally equivalent. Figure 3b shows a two-
manifold Σ with a marked point p at which an op-
erator O is inserted. In figure 3c, the point p has been
removed from Σ, and a Weyl transformation of the
metric of Σ has converted what used to be a small
neighborhood of the point p to a semi-infinite tube.
The tube is analogous to an external line of a Feyn-
man graph, and what would be inserted at the end
of it is a quantum string state. The relation between
the two pictures is the correspondence between op-
erators and states.

To understand the Weyl transformation be-
tween the two pictures, consider the metric of the
plane (figure 4) in polar coordinates:

We think of inserting an operator at the point r = 0.
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Figure 3. States and operators. (a) A deformation of the spacetime metric corresponds to an operator O that
can be inserted at some internal point p on a Feynman graph. By contrast, a state in the quantum mechanics
would be attached to the end of one of the outgoing lines of the graph. (b) A Riemann surface can also have
an operator insertion. (c) If the marked point in panel b is deleted, the Riemann surface is conformally equiva-
lent to one with an outgoing tube that is analogous to an external line of a Feynman graph. The operator O
that was inserted at p is converted to a quantum state of the string that propagates on the tube.



Now remove the point and make a Weyl transforma-
tion by multiplying ds2 with 1/r2 to get a new metric

In terms of w = log r, −∞ < w < ∞, the new metric is

which describes a cylinder. The point r = 0 in one de-
scription corresponds in the other description to the
w → −∞ end of the cylinder. What is interpreted in
one description as an operator inserted at r = 0 is in-
terpreted in the other description as a quantum state
flowing in from w = −∞.

Thus string theory describes quantum gravity
in spacetime. But it does not describe quantum grav-
ity only. It describes quantum gravity unified with
various particles and forces in spacetime. The other
particles and forces correspond to other operators
in the conformal field theory of the string—apart
from the operator O that is related to a fluctuation
in the spacetime geometry—or equivalently to other
quantum states of the string.

The operator–state correspondence that leads
to string theory describing quantum gravity in space-

time is also important in some areas of statistical me-
chanics and condensed-matter physics. That is in-
deed another one of nature’s rhymes.

No ultraviolet divergences
The next step is to explain why this type of theory
does not have ultraviolet divergences, in sharp con-
trast to what happens if we simply apply textbook
recipes of quantization to the Einstein–Hilbert 
action for gravity. When we use those recipes, we
encounter intractable ultraviolet divergences that
were first found in the 1930s. Back then it was not
entirely clear that the problem is special to gravity,
because there were also troublesome ultraviolet di-
vergences when other particle forces were studied
in the framework of relativistic quantum theory.
However, as ultraviolet divergences were overcome
for the other forces—most completely with the
emergence of the standard model of particle physics
in the 1970s—it became clear that the problems for
gravity are serious. 

To understand why there are no ultraviolet di-
vergences in string theory, we should begin by ask-
ing how ultraviolet divergences arise in ordinary
quantum field theory. They arise when all the proper-
time variables in a loop go simultaneously to zero.
So in the example of figure 1, there can be an ultra-
violet divergence when τ1, τ2, τ3, and τ4 simultane-
ously vanish. 

It is true that a Riemann surface can be charac-
terized by complex parameters that roughly parallel
the proper-time parameters of a Feynman graph
(figure 2). But one important difference prevents 
ultraviolet divergences in string theory. The proper-
time variables τi of a Feynman graph cover the
whole range 0 ≤ τi ≤ ∞. By contrast, the correspond -
ing Riemann surface parameters τ̂i are bounded
away from zero. Given a Feynman diagram, one can
make a corresponding Riemann surface, but only if
the magnitudes of the proper-time variables τ̂i are
not too small. The region of the parameter space
where ultraviolet divergences occur in field theory
simply has no counterpart in string theory.

Instead of giving a general explanation, I will
show how it works in the case of the one-loop 
cosmological constant. The Feynman diagram is a
simple circle (figure 5a), with a single proper-time
parameter τ. The resulting expression for the one-
loop cosmological constant is

where H is the particle Hamiltonian ½(P 2 + m2). The
integral diverges at τ = 0, and the divergence is ac-
tually more severe than it looks because of the mo-
mentum integration that is part of the trace.

Going to string theory means replacing the
classical one-loop diagram with its stringy counter-
part, which is a torus (figure 5b). Nineteenth-century
mathematicians showed that every torus is confor-
mally equivalent to a parallelogram in the plane
with opposite sides identified:
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Figure 5. One-loop cosmological constant. (a) In quantum field theory,
this Feynman diagram with a single proper-time parameter τ, underlies
the one-loop cosmological constant. (b) The string theory counterpart
is a torus characterized by a parameter u (the imaginary part of the
complex parameter τ̂ from figure 2a) that, crucially, is bounded away
from zero.

p w

Figure 4. A plane R2, when a labeled point p is
omitted, is equivalent via a Weyl transformation to a
cylinder with a flat metric. Vertical position on the
cylinder is given by w and the point p is mapped to
the bottom end of the cylinder at w = −∞. 



But to explain the idea without any extraneous tech-
nicalities, we will consider, instead of parallelograms,
only rectangles: 

We label the height and base of the rectangle as s
and s′, respectively.

Only the ratio u = s’/s is conformally invariant.
Also, since what we call the “height” as opposed to
the “base” of a rectangle is arbitrary, we are free to
exchange s and s′, which corresponds to u ↔ 1/u. So
we can restrict ourselves to s′ ≥ s, and thus the range
of u is 1 ≤ u < ∞.

The proper-time parameter τ of the particle cor-
responds to u in string theory, with the key differ-
ence being that for the particle, 0 ≤ τ < ∞, but for the
string, 1 ≤ u < ∞. So in the approximation of consid-
ering only rectangles and not parallelograms, the
one-loop cosmological constant in string theory is

There is no ultraviolet divergence, because the
lower limit on the integral is 1 instead of 0. A more
complete analysis with parallelograms shifts the
lower bound on u from 1 to √‾3/2.

I have described a special case, but the conclusion
is general. The stringy formulas generalize the field
theory formulas, but without the region that can give
ultraviolet divergences in field theory. The infrared
region (τ → ∞ or u → ∞) lines up properly between
field theory and string theory, and that is why a string
theory can imitate field theory in its predictions for
behavior at low energies or long times and distances.

Emergent spacetime
My final goal here is to explain, at least partly, in what
sense spacetime emerges from something deeper if
string theory is correct. Let us focus on the following
fact. The spacetime M with its metric tensor GIJ(X)
was encoded as the data that enabled us to define
one particular 2D conformal field theory. That is the
only way that spacetime entered the story.

In our construction, we could have used a dif-
ferent 2D conformal field theory (subject to a few
general rules that I will omit for the sake of brevity).
Now if GIJ(X) is slowly varying (the radius of curva-
ture is everywhere large), the Lagrangian by which
we described the 2D conformal field theory is weakly
coupled and useful. In that case, string theory matches
the ordinary physics that we are familiar with. In this
situation, we may say that the theory has a semiclas-
sical interpretation in terms of strings in spacetime—
and it will reduce at low energies to an interpretation
in terms of particles and fields in spacetime.

When we get away from a semiclassical, weak-
coupling limit, the Lagrangian is not so useful and

the theory does not have any particular interpreta-
tion in terms of strings in spacetime. The potential
breakdown of a simple spacetime interpretation has
many nonclassical consequences, such as the ability
to make continuous transitions from one spacetime
manifold to another, or the fact that certain types 
of singularities (but not black hole singularities) in
classical general relativity turn out to represent per-
fectly smooth and harmless situations in string the-
ory. An example of the nonclassical behavior of
string theory is sketched in figure 6.

In general, a string theory comes with no par-
ticular spacetime interpretation, but such an inter-
pretation can emerge in a suitable limit, somewhat
as classical mechanics sometimes arises as a limit of
quantum mechanics. From this point of view, space-
time emerges from a seemingly more fundamental
concept of 2D conformal field theory.

I have not given a complete explanation of the
sense in which, in the context of string theory, space-
time emerges from something deeper. A completely
different side of the story, beyond the scope of the
present article, involves quantum mechanics and
the duality between gauge theory and gravity. (See
the article by Igor Klebanov and Juan Maldacena,
PHYSICS TODAY, January 2009, page 28.) However,
what I have described is certainly one important
and relatively well-understood piece of the puzzle.
It is at least a partial insight about how spacetime as
conceived by Einstein can emerge from something
deeper, and thus hopefully is of interest in the pres-
ent centennial year of general relativity.
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Figure 6. Schematic representation of a family
of two-dimensional conformal field theories (the
gray region bounded by black lines) that depend on
two parameters. For some values of the parameters,
the theories have semiclassical interpretations in
terms of strings propagating in a spacetime M1, M2,
or M3. Generically there is no such interpretation.
However, one can make a continuous transition
from one possible classical spacetime to another, 
as indicated by the colored lines.


